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Introduction

From 2007 to 2015, more than 1,5 billion of smartphones have been sold
to end-users worldwide 1. For the 4th quarter 2015, 352 millions of Android
smartphones have been sold, compared to 71.53 millions of Apple mobile de-
vices and 4.4 millions of Microsoft mobile devices 2. In 2015, nearly 2 billions
of the Android operating system have been installed on a mobile device,
against 463 millions of iOS operating system and 45 millions of Windows
operating system 3. Android is the first mobile phone operating system used
in the world. Due to its open source architecture and its free cost, Android is
the first mobile platform for mobile developers, with 86% mobile developers
programming for Android 4, in November 2015. Unfortunately, the rise of
mobile apps development induces ever faster developments and less focus on
good development practices, which may cause the appearance of bad prac-
tices.
Code smells are symptoms of the possible presence of design smells, inclu-
ded in design smells [1], which are poor solutions to solve a problem. Code
smells are present in object-oriented programming languages, and some of
those are well-known by developers. For Android, performance code smells
have been warned by Google in the Android developer documentation [2] [3],
to help developers to make better apps. A recent research had demonstrated
that tracking code smells for an Android app is a quality and performance
proof for the app [4]. Also, the correction of some Android code smells can
improve up to 12.4% performance, on UI metrics [5]. The main focus of An-
droid developing these last years was especially on improving performance
of Android apps. Currently, the main problem of smartphone owners is the
energy consumption [6]. Today, a smartphone is gone flat in a few hours or

1. Number of smartphones sold to end-users from 2007 to 2015 : http://goo.gl/
WzR8ck.

2. Global smartphone sales to end users from 2009 to 2015, by operating system :
http://goo.gl/Kufy6x.

3. Installed base of smartphones by operating system in 2015 : http://goo.gl/Bw9ldR.
4. Mobile platforms currently developing for according to global app developers, as of

November 2015 : http://goo.gl/UJW9j4.
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a few days, depending of the full-charge of the battery, its capacity, and how
the smartphone’s owner uses it all day, through the usage of Android apps
for example.
Today, few researches have been done to study the effect of code smells on
energy consumption [7] [8]. Those researches have focused on evaluating the
energy consumption of code smells performance using custom, or made on
proposal, Android apps, instead of popular Android apps available in public
apps stores like the Play Store [9] or F-Droid [10].
We propose to evaluate the energy consumption of Android bad practices
using popular Android applications. For this, I developed an approach, sup-
ported by a framework, to deal with this problem.

During this internship, I enumerated three main contributions :
1. the development of an automated approach to assess and improve the

energy consumption of Android applications, called Hot-Pepper,
2. the validation of Hot-Pepper using an empirical study on five po-

pular Android apps, available in popular apps stores,
3. the evaluation of six Android bad practices, in terms of energy consump-

tion.

This research report is organized as follow. the first chapter concerns bad
practices in Android development and energy consumption understanding.
The second chapter is a state-of-the-art about Android bad practices, and
the energy consumption analysis for Android. The third chapter deals with
our developed approach to evaluate the impact of Android bad practices,
in terms of energy consumption. The fourth chapter describes our empirical
study and discusses the results obtained. Finally, the last chapter is dedicated
to the conclusion of this internship, and future work.

A research paper is currently under preparation, which deals about the
approach and the empirical study [11].
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Chapter 1

Background

In this chapter, we briefly introduce the Android operating system, the
OS that we target in our experiments, some bad practices in Android deve-
lopment, and interesting energy metrics to get the energy consumption of an
Android app.

1.1 The Android Operating System
To explain bad practices in Android development, we have to introduce

the operating system that we use in our experiments and in our approach.
Android is an open source multitasking OS, for embedded devices like mobile
phones, smartwatches, cars or televisions [12]. Based on the Linux kernel 1,
Android is developed by Google 2 since 2005. Four principal layers compose
the software architecture of the operating system (figure 1.1). These layers,
from the lowest to highest, are :

— the Linux kernel (Linux kernel),
— some C/C++ libraries and the Android virtual machine (Native li-

braries),
— the Android Framework,
— some apps and widgets installed by default (Android Applications).

Android apps are developed using the Java language, and take advantage of
the Google API to compose with the whole smartphone’s features.
As Android uses the Java language, each app is compiled in an Android
bytecode, called DEX, to run into a virtual machine 3. The virtual machine
can be Dalvik or Android RunTime (ART), according to the version of the

1. https://en.wikipedia.org/wiki/Linux_kernel
2. https://www.google.com/intl/fr/about/
3. https://en.wikipedia.org/wiki/Virtual_machine
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Figure 1.1 – Android architecture schema.

OS [13]. As Android is multitasking, it is capable to launch and run simul-
taneously several apps. In order to perform the multitasking feature, each
app has to be launched in a virtual machine and, for security reasons, has to
contain its own instance of the virtual machine [14]. So, Android uses its own
virtual machine essentially to optimize the launch of its multiple instances,
each time is launched. In this way, the Android virtual machine is different
than the Java Virtual Machine (JVM) [15].
To let the Android developer communicate with his Android device, he can
use the Android Debug Bridge (ADB) [16]. ADB is a client-server pro-
gram that permits to access to Android features like installing or uninstalling
an app, enabling or disabling the log feature, checking the current state of
an app or event launching some Android specific programs, like Android
Monkey [17].
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1.2 Bad Practices in Android Development
In this research report, we introduce the expression bad practices as poor

solutions located inside and/or outside of the source code. We talk specifi-
cally about a bad practice as a code smell if this one is located in the source
code.
Code smells are associated with poor coding practices. Those practices are
associated to long-term maintainability problems, and can mask bugs. [18] [4]
Also, code smells hind the evolution of applications, and degrade the quality
of the software [4]. As a result, the end-user experience is impacted [19].
Even if Android applications are developed using Java, an Object Oriented
programming language, objects oriented anti-patterns are not fully supported
for Android [20] [21] [18] [22]. First of all, mobile applications use event-driven
programming, and do not use desktop application’s libraries or desktop appli-
cation’s APIs. Secondly, an Android developer can not use libraries or APIs
like Swing, JavaFX to develop his app. Also, GUIs are only declared as XML
files. [23] Thirdly, changes induces in the usage of a specific virtual machine
have important implications both the compilation and the execution of the
app [13] [24] [25]
Reimann et al. have identified 30 possible code smells for Android. [26] [27]
We propose to study briefly 3 common specific code smells in Android ap-
plications, which can be found as substantial proportions : HashMap Usage
(HMU), Internal Getter/Setter (IGS) and Member Ignoring Method (MIM) [4].

Three Android Code Smells

HMU is a code smell related to memory management [28]. An HashMap
is a data structure that can map keys to values, where each key is associated
to a unique slot of values. Even if Oracle confirms that the implementa-
tion provides constant-time performance for the basic operations, a HashMap
is a complex data structure and has a heavy memory and energy cost to
store more that hundred elements [29] [30]. For this reason, Android pro-
vides ArrayMap and SimpleArrayMap as replacements from traditional Java
HashMap, which are more memory-efficient [29].

IGS and MIM are related to micro-optimisation code smells [28]. An
Internal Getter/Setter is an Android code smell that occurs when an attribute
is accessed in the app code. This attribute is accessed through a getter or
a setter. Considering that the Android virtual machine can not inline the
access, the usage of getters and setters are indirect access to attributes, and
may decrease the performance of the app [31]. A Member Ignoring Method is
an Android code smell that occurs when the app does not use a static method
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for a method that does not access an object attribute. The correction of this
code smell improve the performance reaction between 15 to 20% [3].

Three Picture Bad Practices

The usage of pictures can deal with several performance problems in An-
droid apps, if bad practices are introduced. We propose to deal with three
recognized bad practices for pictures : picture formats, the picture compres-
sion, and the picture bitmap usage.

Picture Formats

Three picture formats are frequently used in Android apps : GIF, JPG
and PNG.
The GIF format is a lossless compression picture format limited to 256 colors.
GIF files are used on the web to animate plural pictures. Its usage is highly
discouraged in Android apps [32] [33]. JPG [34] is a lossy compression pic-
ture format, which makes it a common choice too for storing big pictures like
photographs or realistic images. This picture format uses 16 bits per pixel.
PNG [35] is a lossless compression picture format, which makes it a common
choice for pictures on the web. Two different formats of PNG can be found,
PNG-8, which is similar to GIF, and PNG-24, which uses 24 bits per pixel.
As it lossless and uses a greedier pixel compression format, PNG is a good
choice for storing pictures at a small file size and images with few colors.
Moreover, this format is known as a bad practice for big pictures. In such
case, the JPG format should be preferred [32] [34] [35].
Here, Android developers have to take care about the format they are using
for each picture they want to display, according to the size of the picture,
the number of colors encoding the file and the usage (icon, photograph,
etc...) [33].

Picture Compression

A common problem for storing pictures is to have the best trade-off bet-
ween the size of the picture and it quality. The more the size of the file
augments and the more it required resources to load and display it in a
screen. Also, reducing a lot a picture can degrade a lot the picture and have
a bad impact on the visual quality. A solution is to reduce the picture size
without degrading the visual quality of this one.
Existing algorithms like PSNR [36], SSIM [37] and Butteraugli [38] are so-
lutions to measure accurately the difference and similarity of two pictures.
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The reference of this evaluation is related to the perceived difference of both
same pictures, in different resolution, using the human eye. These solutions
provide excellent ways to get the best tradeoff between image compression
and visual quality of a picture.
Using these algorithms and other techniques, it is possible to reduce the size
of the file without degrading the users experience [39] [40].

Picture Bitmap Usage

Android bitmap objects can consume a lot of memory for large pictures,
especially when several pictures are displayed in the same time in Android
views [41]. A common problem with Dalvik is that it can not defragment in
real time the memory, for a single running app. Due to this behavior, the app
become slower. Android developers have to take care about how to load and
cache effectively bitmaps. Android provides three different bitmap formats :
ARGB_8888, ARGB_4444 and RGB_565 [42].
ARGB_8888 allows to use 4 bytes to encode each pixel of the file. ARGB_4444
allows to use 2 bytes for each pixel. The usage of this bitmap format is
discouraged due to poor quality of its configuration. For RGB_565, each pixel
is stored on 2 bytes, and only RGB channels are encoded.
Even if ARGB_8888 uses more bytes per pixel, this format is the default one
for Android. The usage of expensive bitmap formats can be considered as a
bad practice in situations where the picture displayed in the app is too small
to observe a big visual difference with the same picture but with lower pixel
density [43].

1.3 Energy Consumption Understanding
Our study is based on the energy model proposed by Chiyoung Seo, Sam

Malek and Nenad Medvidovic from the University of California [44] [45].
Their model, referred in Equation 1.1, is interesting because it defines the
global energy consumption of a Java application as the energy to access and
compute data, the energy to send data on the network, and the infrastructure
cost (like the JVM).

EjavaApp = Ecomp−access + Ecom + Einfra (1.1)

We propose to adapt this model in measuring a mobile application adding
the energy spent by the operating system, during the execution time of the
application. Our model is modelled as the Equation 1.2.
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EmobileApp = EOS + EjavaApp (1.2)

To measure the global power consumption of an Android application, we ac-
cept to model this one (Eglobal) as the sum of the voltage of the battery (V , in
Volts), multiplied by an intensity measure (Iaverage in Amperes) and the delta
time corresponding to the interval between the associated timestamp and the
timestamp of the next intensity measure (∆t in seconds) - see Equation 1.3.

Eglobal =
∑

(V ∗ ∆t ∗ Iaverage) (1.3)
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Chapter 2

Related Work

In this chapter, we discuss the literature focusing on Android bad smells
and energy analysis on Android devices.

Detection and Correction of Android Bad Prac-
tices

Many tools have been created to detect OO anti-patterns in Java ap-
plications, like Decor [1], JDeodorant [46], Klocwork [47] or Find-
Bugs [48]. Those tools are inspired by the work of William Brown et al. [49]
and Martin Fowler [20].
As explained in Chapter 1, OO anti-patterns are not fully supported for An-
droid, and those tools are not specific to Android.
G. Hecht and al. have developed a Java application called Paprika [24] that
detect automatically 17 OO code smells, including 14 specific Android code
smells. This tool has been improved these three last months to correct auto-
matically detected code smells. Today, Paprika can correct three Android
code smells.
Some experiments uses API invocation trees [50] [51] or modified function
call graph [52] to detect statically Android bad smells.
Dynamic detection is the most used technique to experiment on network [53],
using test scripts [54] [55] [56] or scenarios [57].
Jabbarvand and al. uses both static and dynamic energy leaks detection to
rank applications of the same category [58]. The static of this tool, called
Ecodroid, annotates the call graph of the android app for each bad smell
detected. The dynamic part to run test cases on the annotated code to create
a profiler for this app. The combination of these models produces a score,
which is used to rank the application.
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Evaluation of Android Bad Practices
Most of the literature, specific to the energy impact of Android bad prac-

tices, is based on high-level energy bugs like wakelocks [59] [60], ads [61] and
network usage [62] [63] [50]. In contrast, we are interested in reducing the
energy consumption of Android mobile phones in correcting specific Android
code smells and picture bad practices.
Two research papers focus on Android code smells. Ricardo Pérez-Castillo
and Mario Piattini investigated the energy effect of God Class refactoring
for Android apps [64]. They found that this correction increases the energy
consumption of the mobile, by implementing new methods and classes that
increase the memory used by the app. Ding Li and William G. J. Halfond [55]
measures the energy saving for IGS and MIM code smells, for a custom An-
droid application. Those evaluations consist in looping 5,000,000 times on
a single line of code, which contains a code smell. For this approach, they
found that the correction of IGS and MIM consumes respectively 35% and
15% less energy than a code that contains those code smells.
Quite the contrary, we create an approach that evaluate useful Android apps
that can be found on the Google Play [9] and the F-Droid [10] stores.

Automated Approaches to Evaluate the Energy
Consumption of Bad Practices

Two research papers propose to estimate the energy consumption on a
device’s emulator, in order to help the developer to build the most energy-
efficient app as possible, in real time [65] [66]. Those papers simulated a
processing speed and network characteristics, to match the app behavior. In
contrast, we based our experiments on a popular Android device, the Nexus
4. The approach to evaluate the energy consumption on a real device involve
to focus on stability and accurate results.
Liu Y. and al. studied device’s sensors usage, using a dynamic tool called
Greendroid [67]. They evaluated Greendroid on 13 popular android ap-
plications.
Linares-Vasquez and al. uses scenarios based on user events in order to com-
pute the energy consumption of 55 mobile apps, based on API calls [57].
Results of this research paper is that some good implementation practices
like the use of Model-View-Controller, can have a non-negligible bad impact
on the energy-consumption of the mobile phone. Also, they suggest to ca-
refully balance the tradeoff between an high maintainability solution and a
better energy-efficiency solution.
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Pathak, Hu and Ming measured the energy consumption in Android’s soft-
ware components, using the eprof grained energy tool [68]. Eprof exposes
that 65% to 75% of the energy-consumption in free apps is spent in ads, and
can reveals several energy bugs like wakelocks, in Android apps.
Lide Zhang and al. focused on a automatic power estimator for Android,
based on user-reported failures [51]. Powerbooter is accurate to within
4.1% on average, instead of our approach that is accurate to less than 1%,
using a physical measuring device plugged on the smartphone.
J. Duribreux and al. [63] and M. Lineares-Vasquez [57] used an hardware
power monitor to measure efficiently the energy consumption for a single
Android app, instead of mesuring bias using an Android application. This
physical device can measure precisely the energy consumption spent in the
smartphone, plugged between the battery and the smartphone.
Gottschalk and al. proposed a method to improve energy-efficiency on ap-
plication level, by applying re-engineering techniques like code analysis and
code restructuring [59]. This method is applying on mobile apps and uses
loop bugs, dead code, inline methods and cache usage as energy code smells.
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Chapter 3

HOT-PEPPER : An Automated
Approach to Assess and Improve
the Energy Consumption of
Android Applications

In this chapter, we introduce Hot-Pepper, an automated approach that
evaluate the energy consumption of an Android application. This approach is
supported by a framework, using three different tools. Using Hot-Pepper,
we are focusing only on the application running on the smartphone, and we
actually reducing the harmful effects of noise as much as possible.

3.1 Overview
Hot-Pepper is an approach which allows the Android developer to de-

ploy a most energy-efficient app than the original one. For this to happen,
the approach takes as input the source code of the app to detect and correct
code smells. Once code smells have been corrected, the approach build an
Android version of the app for each code smell corrected. After that, it eva-
luates each Android version by computing a complex energy metric for those,
each metric associated to the corresponding Android version, in order to find
the version that consumes the less energy. The approach is summarized in
Figure 3.2.
The Hot-Pepper approach is supported by a framework, which uses three
main tools :

— Paprika[4], a Java application to statically detect and correct An-
droid code smells,
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— Ghost Pepper, a Python software to create a scenario based on user
events, for a specific Android application,

— and Naga Viper, a Python software to collect, compute and analyze
energy metrics.

First of all, Hot-Pepper uses Paprika to detect and correct Android
code smells in the Android app. Resulting to the correction, Paprika re-
turns Android APKs that corresponds to corrected APKs and the original
one. Considering that the approach performs the collection and computation
of energy metrics in runtime, we have to run the app using a deterministic
scenario. Ghost Pepper has been developed to help the developer to imple-
ment easily and faster a scenario based on user events. This step is optional,
because the developer can upload his own scenario to run the app. Finally,
when the scenario is ready to run the app, Naga Viper uses given APKs
from Paprika, the scenario based on user events and a smartphone plugged
to a physical measuring device to perform the collection and computation of
energy metrics. The smartphone has to be plugged to the physical measuring
device because Hot-Pepper is intrusive and performs computation on ac-
curate collecting values. Naga Viper collects and computes energy metrics
for each APK available to evaluate them, in order to return to the developer
a bundle, which contains the best energy-efficient APK, the associated An-
droid source code and a log file concerning the correction.
The whole approach is fully detailed in figures 3.3, 3.4, 3.5 and 3.6.
We extracted 13 specifications to use this framework, listed in figure 3.1.
Without these specifications, we don’t guarantee accurate and repeatable
experiments.
In the next section, we explain how works Hot-Pepper through Paprika,
Ghost Pepper and Naga Viper.

3.2 PAPRIKA
To evaluate energy metrics of Android code smells, Hot-Pepper has to

produce as much versions of the app as corrected code smells. To analyze an
Android app, Hot-Pepper uses Paprika, a static tool analysis for Android
apps. This tool offers to detect Android code smells, and to correct them,
using the Android APK and the app source code to analyze.

Step 1 : Detect and Correct Android Code Smells

Input : The APK and the source code of the Android app.
Output : Original and corrected versions of the Android app.
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1. The smartphone’s battery must be removable,
2. battery’s pins must be connected, directly or indirectly, to the smart-

phone,
3. the developer may use an external measuring device, like an ammeter

or a voltmeter, to measure the energy consumption of the smartphone,
4. no SIM data usage during the experiments,
5. the luminosity may not to be automatic,
6. no dynamic wallpaper,
7. experiments must be repeated x times,
8. the battery must be charged at 100% before each set of x runs,
9. the smartphone must be shutdown approximately 5 minutes between

each set of x runs,
10. if the developer wants to use an automated acceptance testing tool

like Calabash, it is advisable to use the USB connection instead of
the Wifi connection,

11. if the USB connection to launch the scenario is preferred, the developer
has to shutdown the USB charging before each set of x runs,

12. the Wifi has to be shutdown when the application doesn’t require it
usage,

13. if the Wifi has to be used, the developer must assure that his internet
network is stable.

Figure 3.1 – Thirteen specifications to obtain accurate and repeatable ex-
periments using Hot-Pepper

Figure 3.2 – Overview of the Hot-Pepper approach.
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Description : Paprika operates the analysis of an Android app in two
steps : the detection of Android code smells, and the correction of those de-
tected code smells. The detection of code smells uses the Soot framework, a
Java application that analyze an Android app in order to build a comprehen-
sive representation of the app. Using this representation, Paprika extracts
some informations for each code smells type, in order to correct them. Those
informations are used by the corrective part. Paprika uses Spoon [69], an
open source library to analyze and transform Java source code 1, to correct
Android code smells. For each code smell detected, Paprika generates a
version of the app without this code smell. Also, the tool generates a version
without any detected code smells. At the end of the process, Paprika returns
generated Android APKs and the original one. To finish with the corrective
part, it has been proved experimentally that the correction of code smells
don’t change the Android app’s behaviour.
This first step of Hot-Pepper is sketched as figure 3.3.
Implementation : In order to retrieve Android code smells, Paprika uses
Soot to build a comprehensive representation of the Android app. This re-
presentation, or model, is directly used by Paprika to transform it into a
graph. So, the Android app is represented as a Neo4J 2’s graph. This graph
is modeled as follow : nodes are Android entities, like App, Class, Method,
Attribute, ..., and edges are relations between those entities. Informations
of this graph, like code smells, are retrieved using specified queries with Cy-
pher 3, a declarative and SQL-inspired language for describing patterns in
graphs. Finally, for the detection part, Paprika returns a comprehensive
list of informations about Android code smells. These informations can be
for example the proportion and the location of each Android code smells
type.
For the correction of code smells, this phase takes as input the list of de-
tected code smells and the original source code of the app. Using Spoon,
Paprika build a comprehensive abstract syntax tree (AST) of the app. Pa-
prika browses this AST with Spoon processors. Each Spoon processor can
visit and transform a source program element, like Class, Method, Field,
Statement, etc... and is allowed to transform it. Using the list of detected
code smells, Paprika starts each processor independently in order to visit
each element corresponding to the location of a code smell and correct this
one. Finally, Paprika starts in the same time each processors to create an
app that doesn’t contain detected Android code smells.

1. http://spoon.gforge.inria.fr
2. https://neo4j.com
3. https://neo4j.com/developer/cypher-query-language/
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Figure 3.3 – Overview of Paprika, the Java application which powered
analysis of Android apps for Hot-Pepper.

3.3 GHOST PEPPER
To measure accurately and automatically the energy consumption in run-

time, we propose to create a scenario, based on user events. User events are
events that a smartphone user can do, like scrolling, touching, texting, change
view, etc...
The developer can propose his own scenario using an automated acceptance
testing tool, like Calabash[70] or Robotium[71]. Running the application
on a scenario created by the developer is the best option, because the de-
veloper has the knowledge to explore the energy consumption of his entire
application or just a single feature of this one. However, this method can
be time consuming, and create a specific scenario for a given Android app
can takes many hours or days for refinement and approval. To overcome this
problem, we developed a tool, called Hot-Pepper, which uses Android
Monkey, an Android feature which stress the application by sending a gi-
ven number of user events.

Step 2 : Elaborate a Scenario based on User Events

Input : None.
Output : A scenario, based on user events.
Description : Ghost Pepper is an extension to Hot-Pepper that permits
to generate scenarios based on user events, using Android Monkey. A
specification is to generate scenarios that called a lot of code smells, in order
to evaluate the energy consumption on interesting scenarios. For Ghost
Pepper, we propose to generate at least two scenarios, and select the best
one for the experimentation part. The best scenario of the generated set is the

17



Figure 3.4 – Sketch of elaborating a scenario, based on user events. The
option A) takes as input the developer’s scenario, and doesn’t use Ghost
Pepper. The option B) consists in elaborating a scenario using Ghost-
Pepper, without help from the developer.

scenario that call much code smells than other one, during their executions.
This step is sketched as figure 3.4.
Implementation : To implement Ghost Pepper, we developed in Python
a wrapper to communicate easily with ADB[16]. The tool uses this wrapper
to send commands to the Android device. Those commands can be to clear
logs, to save logs or to launch a new Android Monkey instance. For each
Android Monkey instance launched, Ghost Pepper activates the log
output. This log output is useful to the process because the tool will obtain
app’s informations during it execution parsing it, like the activity launched or
if a code smell has been called and what type is it. At the end of an instance,
we retrieve those informations and count the occurrences of each code smells
called and the total number of code smells called. Once all instances have
been launched, Ghost Pepper selects the deterministic seed from Android
Monkey, corresponding the scenario that called the highest number of code
smells during the execution.

3.4 NAGA VIPER
One of the contribution using Hot-Pepper is to evaluate the energy

consumption of a given Android app in runtime. For this, we use Naga
Viper, a Python tool that collect, compute and analyze energy metrics in
order to evaluate the impact of corrected APKs.
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Figure 3.5 – Sketch of collecting metrics, using Naga Viper.

Step 3 : Compute Energy Metrics

Input : Corrected and original Android APKs, a scenario based on user
events, and a smarphone plugged to a physical measuring device.
Output : A file that contains energy metrics for each Android version, asso-
ciated to corresponding Android APK.
Description : Naga Viper is a Python tool that collect, compute and ana-
lyze energy metrics. Naga Viper is intrusive, so we propose to compute
these energy metrics in runtime, on an Android smartphone, via a scenario
entirely dedicated to the Android app. The tool computes the average energy
consumption of the smartphone during the execution of the app, the average
execution time of the app and the voltage of the battery powering the smart-
phone.
This step is sketched as figure 3.5.
Implementation : The principle energy metric collected is the energy consump-
tion of the battery during tests. This energy metric is collected via the API
of an external device, like an ammeter or a voltmeter.
To avoid external interferences and restore the accuracy to our data, we run
x times the application, and get as final informations the average ampere
value, the average execution time and the average execution time of those x
runs.
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Figure 3.6 – Sketch of analyzing energy metrics, using Naga Viper.

Step 4 : Evaluate the Impact of Corrected APKs

Input : n informations file, for n version of a given Android application.
Output : The best energy-efficient Android application.
Description : After running n times the step 3, for each version built in
step 1, each output from step 3 has to be analyzed.
This part compare the average power consumption, using the average energy
consumption and the average execution time, to get the application’s version
associated to the minimal power consumption, as explained in background.
After compute these power consumption for each version, we confront each of
those versions and get the best energy-efficient version. Finally, this version
is send to the developer.
This step is sketched as figure 3.6.
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Chapter 4

Empirical Study

We propose to measure energy effects of 3 Android performance code
smells on 5 popular Android apps, and 3 picture bad practices on 7 versions
of a custom Android app. The choice has focused on a custom app to evaluate
picture bad practices because we noticed that existing open source Android
apps do not have much saved resources. Indeed, most of those apps download
from remote servers resources, to display them on screen once downloaded.
Considering that we don’t have any access to those resources, we can not
modify them in order to compare some versions of a unique resource. As the
experiment does not require Paprika, we evaluate directly those bad prac-
tices using Naga Viper.
We computed the Cliff’s Delta effect size to quantify the importance of the
difference between the energy consumption of each Android version, for both
experiments. Cliff’s Delta is a non-parametric effect size measure, which re-
presents the degree of overlap between two sample distributions. It ranges
from −1 (if all selected values in the first group are larger than the second
group) to +1 (if all selected values in the first group are smaller than the se-
cond group), and equals 0 when two sample distributions are identical. Each
population is an Android version, composed by the n computed average glo-
bal energy consumption. This is what the Cliff’s Delta estimation means,
between two populations [5] :

— lower than 0.147, there is no significant difference between these,
— between 0.147 and 0.330, there is a low significant difference between

these,
— between 0.330 and 0.474, there is a medium significant difference bet-

ween these,
— larger than 0.474, there is a large significant difference between these.
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Figure 4.1 – A picture of an experiment using the framework Hot-Pepper

Figure 4.2 – A picture of the ammeter, plugged on the battery
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Evaluation of Three Android Code Smells
We performed our experiments on Android code smells using 3 of those :

HashMap Usage (HMU), Internal Getter/Setter (IGS) and Member Ignoring
Methods (MIM). The code smells chosen are respectively listed and explained
in Chapter 2. For this experiment, we use Hot-Pepper.
To reproduce our results on Android code smells using Hot-Pepper, Figure
4.3 lists ten specifications to respect.
To experiment our framework on popular Android apps, we had to find open
source Android apps that contain those code smells, and respect following
criteria :

— two given apps are not listed in the same category,
— the usability of the Android app must be easy to run it using a simple

scenario based on user events,
— the app must contain at least two of code smells we currently study.

To find those apps, we used F-Droid, an open source app store that exceeds
2,000 Android applications since June 2016 [72] and the following method.
First of all, we developed a Ruby web crawler that extracts data from an
XML file that describes the list of Android code smells available through
the store. Once those data extracted, we downloaded the last version and
associated meta-data of each open source app. After that, we used Paprika
to detect and list detected code smells in those apps, and put aside apps
that contains at least 2 of the three studied code smells. At the state of the
method, we have listed 37 apps for 6 different categories : Music, Reader,
Productivity, Utility, Sport, and Education. For each category, we get the
app that contained the most of code smells and that can be build using the
code source associated to the app. To finish, we get 5 apps for 5 different
categories :

— Aizoban (Reader - version 1.2.5), an online and offline Manga reading
application 1,

— Calculator (Utility - version 5.1.1), a fork of the official Cyanogen-
Mod calculator 2,

— SoundWaves (Music - version 0.136.10), a client to manage, fetch and
listen to podcasts 3,

— Todo (Productivity - version 1.0), an app to create and manage tasks 4,
— and Web Opac (Education - version 4.5.9), a client that offers online

1. http://goo.gl/6mZblY
2. http://goo.gl/2vhmCW
3. http://goo.gl/nQk7qQ
4. http://goo.gl/NXdNMj
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books catalogues of universities around the world 5.
Here, it is important to note that Calculator and Todo do not required Wifi,
unlike the three other Android apps. Once apps have been selected, we de-
veloped a scenario based on user events for each of those, using Calabash.
Scenarios for these apps are available in the Github space of Hot-Pepper 6.
The major issue for us, in this part, is make sure that the scenario explores
the app in order to call each view and each feature at least one time. Ho-
wever, those scenarios does not take care about log in for remote accounts
like Google, Facebook, Twitter, etc... After elaborating a scenario, we de-
tected and corrected Android code smells in the app to obtain 5 different
versions of each app : the original version of the app, the version without
any HMU (VHMU), the version without any IGS (VIGS), the version without
any MIM (VMIM) and, finally, the version without the 3 code smells (VALL).
Finally, we launched Naga Viper on each app 20 times, using a Nexus 4
mobile phone combined with an ammeter, the YoctoAmp, to collect via the
measuring device’s API energy values. Once energy values collected for 20
runs, we computed energy metrics and analyzed them. Also, to be sure that
the energy saving for each corrected app is valuable, we use the Cliff’s Delta
statistical method to deliberate if this one is significant or not.
Static data for each selected app are available in Figure 4.4.
Figure 4.5 represents the energy saving percentage between each corrected
app and the original one. Figure 4.6 presents cliff’s delta estimations for
each evaluated Android version. Based on those figures, we can observe a
significant difference of the energy consumption. For Calculator and Todo
apps, VALL is the best version of those with an energy saving of 1.69% and
4.83% respectively. Unlike those apps, VALL is visually the second best energy-
efficient version for Aizoban, SoundWaves and Web Opac. The best version
for Aizoban is VHMU , which consumes 2% less than the original version. The
best version for SoundWaves is VIGS, which consumes 1.43% less than the
original version. The best version for Web Opac is VMIM , which consumes
3.86% less than the original version.
According to Figures 4.4 and 4.5, we notice that even if the total number
of Android code smells detected by Paprika is very high, we can elaborate
scenarios that does not execute at least once of type. For example, the num-
ber of MIM detected by Paprika for Aizoban is 110, but the established
scenario for this app does not execute once MIM during the scenario. Using
the corrected log file for MIM in Aizoban, we have noted that all MIM are
located in libraries and code to log in remote accounts, which we did not care

5. http://goo.gl/PWrRRy
6. https://github.com/SOMCA/hot-pepper-data
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1. Use the Nexus 4 smartphone,
2. use the 4.4.1 version of Android,
3. use the Dalvik virtual machine,
4. use the original battery of the Nexus 4 (limited to 1A),
5. put down the sound as lowest as possible - but not cut off,
6. disable the automatic luminosity,
7. put down the luminosity to the minimum,
8. dismiss the wallpaper to leave the screen totally black,
9. perform 75 measures per second using the YoctoAmp ammeter,
10. perform each set of tests 20 times for each version, to avoid bad effects

from the usage of Wifi, bluetooth, etc...

Figure 4.3 – Ten specifications to reproduce our experiments using Hot-
Pepper

App APK Size #sHMU #sIGS #sMIM
Aizoban 5.1 39 190 110
Calculator 2.8 0 10 8
SoundWaves 5.5 5 47 14

Todo 0.26 9 3 0
Web Opac 4 48 77 43

Figure 4.4 – APK size, in MBytes, and number of code smells detected by
Paprika, for each studied Android app.

in the scenario.
Based on Figure 4.6, we can notice that even if VALL is not the best version
for Aizoban, SoundWaves and Web Opac, this version is statistically equiva-
lent to the best version of those apps. So, VALL can be also considered as the
best version for the 5 chosen Android apps.
Finally, based on Figure 4.5, we can noted visually that VALL is the best
app for all apps that does not required the Wifi. As VALL can be considered
as the best version for each Android app statically, we can ask ourselves if
energy metrics for Aizoban, SoundWaves, and Web Opac, are less accurate
than Calculator and Todo.
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App #Steps #dHMU #dIGS #dMIM VHMU VIGS VMIM VALL

Aizoban 169 10 1300 0 -2.00% -1.09% +0.08% -1.38%
Calculator 325 0 6122 1350 Null -0.18% -0.45% -1.69%
SoundWaves 172 420 8053 6560 -0.38% -1.43% +0.29% -1.29%

Todo 248 40 20 0 -2.40% -2.04% Null -4.83%
Web Opac 136 6 133 40 -2.06% -2.08% -3.86% -3.50%

Figure 4.5 – Number of each code smell called and number of steps during
the execution of the scenario, and percentage of energy consumption saving
for each version of studied Android apps.

App VHMU VIGS VMIM VALL Best vs VALL

Aizoban 0.58 0.46 -0.06 0.58 -0.01
Calculator Null 0.11 0.18 0.42 Null
SoundWaves 0.08 0.26 -0.24 0.26 0

Todo 0.66 0.62 Null 0.92 Null
Web Opac 0.43 0.46 0.69 0.60 -0.11

Figure 4.6 – Cliff’s Delta estimation between each corrected version and
the original one of studied Android apps. If the best energy-efficient APK is
not VALL, we want to estimate the Cliff’s Delta value between the best one
and the VALL version.
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Evaluation of Three Picture Bad Practices
In this part, we propose to evaluate three picture bad practices using

Naga Viper and 7 versions of a custom Android app. Those versions shared
the same body, pictures, events, and scenario. Only pictures properties have
been changed between those 7 versions.
The skeleton of the original app is composed of 12 PNG pictures, displayed
using a GridView view of 3 x 4 pictures, found on the Internet 7. The original
app contains only 2 features : to scroll vertically and to display a picture
3 seconds tapping on it. The scenario to use this app is deterministic and
lasts around 2m30s. It just consists in scrolling and clicking on several pic-
tures during this time. This app is called VPNG, because it emulate an app
that display PNG pictures. We created a version that contains JPG pictures,
instead PNG, using a software that transforms pictures. The quality of each
JPG picture is optimal. This version is called VJPG. To evaluate pictures
compression, we reduced the size of each JPG file using JPEGMini 8, one of
the best software on the market to reduce the size of a JPG file without de-
grading the quality of the picture. The directory that contains PNG pictures
is 2.7 Mb, the JPG directory is 1 Mb and the directory of compressed JPG
is 367 Kb. This version is called VJPGO. Finally, we evaluated the following
bitmap formats : ARGB_8888 and RGB_565. The format ARGB_4444 has not
been retained because this format is now deprecated in Android. Studied
formats have been associated to pictures formats PNG and JPGO, to create
4 new apps : VARGB−PNG, VARGB−JPGO, VRGB−PNG, and VRGB−JPGO.
Based on results in Figure 4.7, we notice visually that the most energy-
efficient version is the version that uses ARGB_8888 and optimized JPG. Also,
we notice that using JPG pictures instead of PNG pictures can save a few
quantity of energy. For pictures compression, the version using optimized
JPG pictures consumes the same value of energy than the original ones. To
finish, contrary to the Android performance tips focusing on pictures [43],
we found that using ARGB_8888 as a bitmap format saves more energy than
using RGB_565. Also, using optimized JPG associated with RGB_565 is wide-
ning the gap with PNG pictures associated with the same bitmap format.
Based on Figure 4.8, we found that the difference between VJPG/VJPGO,
VARGB−PNG/VRGB−JPGO and between VPNG/VRGB−PNG are not significant.
For each other version, the difference of energy consumption is significant,
and contributes to conclude that VARGB−JPGO is the most energy-efficient
app. Those results indicate also that VARGB−PNG and VRGB−JPGO are stati-

7. https://github.com/SOMCA/hot-pepper-data/tree/master/pictures_xps
8. http://www.jpegmini.com
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VPNG VJPG VJPGO VARGB−PNG VARGB−JPGO VRGB−PNG VRGB−JPGO

E. cons. 0.0525 0.0536 0.0535 0.0487 0.0482 0.0524 0.0490

Figure 4.7 – Evaluation of each version of the studied app, using Naga
Viper, in terms of energy consumption. The unit is Joules.

VJPG VJPGO VARGB−PNG VARGB−JPGO VRGB−PNG VRGB−JPGO

VPNG -0.74 -0.72 1 1 0 1
VJPG - 0.10 1 1 0.69 1
VJPGO - - 1 1 0.72 1

VARGB−PNG - - - 0.2 -0.96 0
VARGB−JPGO - - - - -0.98 -0.23
VRGB−PNG - - - - - 0.43

Figure 4.8 – Cliff’s Delta estimation between each version of the original
app.

cally same versions and that VRGB−JPGO can be considers as the second best
version app, in terms of energy consumption.
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Conclusion & Future Work

To conclude, our experimental study has proved that Android bad prac-
tices have a negative impact on the energy consumption of the smartphone.
Our contributions have been to develop an approach that evaluate Android
bad practices, in order to deploy the best energy-efficient one. Also, we eva-
luate the energy consumption of 6 Android bad practices whose 3 in 5 open
source Android apps.
More personally, this internship has allowed me to improve myself in sear-
ching the best and simple solution for an experimental problem and in prac-
ticing my English. Also, I had to manage and overcome some teamwork’s
problems and difficulties to resolve hardware problems, which discouraged
me more than once.
I finished my internship in contributing to the publication of a research paper,
describing the Hot-Pepper approach and the empirical study [11].

We can clearly identified four improvements of Hot-Pepper for future
work. First, we could improve the framework by adding execution traces in
Android apps, in order to focus especially on collecting energy values that are
interesting in our experiments. Also, given that our approach is intrusive and
can be rejected by developers who does not want to plug a physical device on
their mobile phone, it could be interesting to study non-intrusive methods to
compute energy metrics on a smartphone, or to deploy the framework in the
cloud. Finally, generating automatic and accurate Android scenarios using
Ghost Pepper could be beneficial to the approach to be less dependent on
the developer.
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